Loading [MathJax]/jax/output/HTML-CSS/jax.js

2019年1月27日

量子糾纏—續集

           上篇文章中介紹了EPR實驗,也提到了「糾纏」一詞的出現。在實際給出量子糾纏的定義前,先介紹一些基本的物理與數學觀念:

複合系統的量子態 (States for composite systems)


           假設有兩個 qubits 的狀態分別為 |ψ1|ψ2 ,則可以用張量積(tensor product)的形式表示整個系統的狀態:|ψ=|ψ1|ψ2 。為了方便起見,也可以寫成 |ψ1|ψ2,或是在不致混淆的情形下,僅記做 |ψ1ψ2。以最簡單的情況舉例,若兩個 qubits 分別在 |0|1 狀態,則整個系統可以寫作 |01

           對於每個 qubit 來說,其狀態可能是兩個基底( |0 或  |1  )的疊加,即 |ψ1=A|0+B|1;類似的,對於 qubit 2 也可以類似的展開: |ψ2=C|0+D|1,其中 A,B,C,D 為展開後的係數。那麼整個系統的狀態該如何表示呢?
|ψ=|ψ1|ψ2=(A|0+B|1)(C|0+D|1)=AC|00+AD|01+BC|01+BD|11=α|00+β|01+γ|01+δ|11
其中 α,β,γ,δ 為對應的係數。

           也就是說,對於由兩個基底為 |0|1 的子系統組成的系統,其基底為 |00,|01,|01,|11 四個狀態,為不同子系統基底的張量積。此觀念可以被類似的推廣到更高維度或更多子系統的系統,複合系統的基底會是各子系統基底不同組合的張量積。



可分性 (Separability) 與糾纏 (entanglement)

           對於一個複合系統的狀態,例如 12(|00|10),可以被化簡為 (|0|12)|0,則稱此狀態為「可分的」(separable)。一個可分的狀態表示兩個子系統分別擁有各自的狀態,僅僅是被以張量積的方式合併在一起。

           而對於另一個狀態 12(|00|11),可以證明不存在兩個狀態 |ψ1,|ψ2,能使其張量積為原本的狀態。這種無法寫成張量積的狀態,稱作不可分(non-separable)的狀態,又稱作糾纏態

貝爾態(Bell's States)


           貝爾態是四個對於兩個 qubit 組成的系統中常見的糾纏態,在 EPR 實驗中使用的狀態即是其一。四個狀態如下:
|Φ±=12(|00±|11)|Ψ±=12(|01±|10)

小結

           這篇文簡單介紹了複合系統的狀態以及量子糾纏的數學定義。如同在前篇文章中所述,量子糾纏是和古典直覺完全不同的現象,也因此在量子計算、量子通訊等不同的領域中都扮演了重要的角色。事實上關於糾纏還有很多課題可以深入探討:從如何在不同的系統製備糾纏態、如何衡量糾纏態的「糾纏程度」、到量子糾纏在物理學的本質等等。總而言之,糾纏在將來的應用中會是非常重要的一項資源。


沒有留言:

張貼留言